Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(1): e25582, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289188

RESUMO

Bone and dental tissues are richly innervated by sensory and sympathetic neurons. However, the characterization of the morphology, molecular phenotype, and distribution of nerves that innervate hard tissue has so far mostly been limited to thin histological sections. This approach does not adequately capture dispersed neuronal projections due to the loss of important structural information during three-dimensional (3D) reconstruction. In this study, we modified the immunolabeling-enabled imaging of solvent-cleared organs (iDISCO/iDISCO+) clearing protocol to image high-resolution neuronal structures in whole femurs and mandibles collected from perfused C57Bl/6 mice. Axons and their nerve terminal endings were immunolabeled with antibodies directed against protein gene product 9.5 (pan-neuronal marker), calcitonin gene-related peptide (peptidergic nociceptor marker), or tyrosine hydroxylase (sympathetic neuron marker). Volume imaging was performed using light sheet fluorescence microscopy. We report high-quality immunolabeling of the axons and nerve terminal endings for both sensory and sympathetic neurons that innervate the mouse femur and mandible. Importantly, we are able to follow their projections through full 3D volumes, highlight how extensive their distribution is, and show regional differences in innervation patterns for different parts of each bone (and surrounding tissues). Mapping the distribution of sensory and sympathetic axons, and their nerve terminal endings, in different bony compartments may be important in further elucidating their roles in health and disease.


Assuntos
Axônios , Neurônios , Animais , Camundongos , Microscopia de Fluorescência , Camundongos Endogâmicos C57BL , Terminações Nervosas
2.
Mol Pain ; 19: 17448069231222407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073226

RESUMO

STOML3 is a membrane bound scaffolding protein that has been shown to facilitate the opening of mechanically sensitive ion channels and contribute to noxious mechanical sensation, allodynia and hyperalgesia. In this study, we aimed to determine the role of STOML3 in noxious mechanical sensitivity of bone afferent neurons and carrageenan-induced acute inflammation in the bone. An in vivo, electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons that innervate the tibial marrow cavity in anaesthetised rats, in response to noxious mechanical stimuli delivered to the marrow cavity, before and after injection of either the STOML3 oligomerisation inhibitor OB-1 or vehicle, in either naïve animals or animals with carrageenan-induced inflammation of the marrow cavity. A dynamic weight-bearing apparatus was used to measure weight bearing in response to inflammatory pain before and after injection of OB-1 or saline into the tibial marrow cavity in the presence of carrageenan-induced inflammation. Electrophysiological recordings revealed that Aδ, but not C bone afferent neurons have a reduced discharge frequency in response to mechanical stimulation, and that carrageenan-induced sensitisation of Aδ, but not C bone afferent neurons was attenuated by inhibition of STOML3 oligomerisation with OB-1. Animals treated with OB-1 spent a significantly greater amount of time on the limb injected with carrageenan than animals treated with saline. Our findings demonstrate that inhibition of STOML3 oligomerisation reduces inflammatory bone pain by reducing the sensitivity of Aδ bone afferent neurons to mechanical stimulation. Targeting STOML3 may be an effective approach to reduce pain from noxious pressure and/or painful inflammatory pathology in bone.


Assuntos
Dor Aguda , Dor Musculoesquelética , Ratos , Animais , Carragenina/toxicidade , Carragenina/metabolismo , Ratos Sprague-Dawley , Neurônios Aferentes/metabolismo , Hiperalgesia/metabolismo , Dor Musculoesquelética/metabolismo , Dor Aguda/metabolismo , Modelos Animais , Inflamação/metabolismo
3.
Osteoarthritis Cartilage ; 31(10): 1342-1352, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353141

RESUMO

OBJECTIVE: There have been significant developments in understanding artemin/GFRα3 signaling in recent years, and there is now accumulating evidence that artemin has important roles to play in pain signaling, including that derived from joint and bone, and that associated with osteorthritis (OA). METHODS: A total of 163 Sprague-Dawley rats were used in this study. We used an animal model of mono-iodoacetate (MIA)-induced OA, in combination with electrophysiology, behavioral testing, Western blot analysis, and retrograde tracing and immunohistochemistry, to identify roles for artemin/GFRα3 signaling in the pathogenesis of OA pain. RESULTS: We have found that: 1) GFRα3 is expressed in a substantial proportion of knee joint afferent neurons; 2) exogenous artemin sensitizes knee joint afferent neurons in naïve rats; 3) artemin is expressed in articular tissues of the joint, but not surrounding bone, early in MIA-induced OA; 4) artemin expression increases in bone later in MIA-induced OA when pathology involves subchondral bone; and 5) sequestration of artemin reverses MIA-induced sensitization of both knee joint and bone afferent neurons late in disease when there is inflammation of knee joint tissues and damage to the subchondral bone. CONCLUSIONS: Our findings show that artemin/GFRα3 signaling has a role to play in the pathogenesis of OA pain, through effects on both knee joint and bone afferent neurons, and suggest that targeted manipulation of artemin/GFRα3 signaling may provide therapeutic benefit for the management of OA pain. DATA AVAILABILITY: Data are available on request of the corresponding author.


Assuntos
Nociceptores , Dor , Ratos , Animais , Nociceptores/metabolismo , Ratos Sprague-Dawley , Dor/etiologia , Dor/metabolismo , Neurônios Aferentes , Inflamação/metabolismo , Modelos Animais de Doenças
4.
Pain ; 163(2): 390-402, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34108432

RESUMO

ABSTRACT: Although it is clear that osteoarthritis (OA) pain involves activation and/or sensitization of nociceptors that innervate knee joint articular tissues, much less is known about the role of the innervation of surrounding bone. In this study, we used monoiodoacetate (MIA)-induced OA in male rats to test the idea that pain in OA is driven by differential contributions from nerves that innervate knee joint articular tissues vs the surrounding bone. The time-course of pain behavior was assayed using the advanced dynamic weight-bearing device, and histopathology was examined using haematoxylin and eosin histology. Extracellular electrophysiological recordings of knee joint and bone afferent neurons were made early (day 3) and late (day 28) in the pathogenesis of MIA-induced OA. We observed significant changes in the function of knee joint afferent neurons, but not bone afferent neurons, at day 3 when there was histological evidence of inflammation in the joint capsule, but no damage to the articular cartilage or subchondral bone. Changes in the function of bone afferent neurons were only observed at day 28, when there was histological evidence of damage to the articular cartilage and subchondral bone. Our findings suggest that pain early in MIA-induced OA involves activation and sensitization of nerves that innervate the joint capsule but not the underlying subchondral bone, and that pain in late MIA-induced OA involves the additional recruitment of nerves that innervate the subchondral bone. Thus, nerves that innervate bone should be considered important targets for development of mechanism-based therapies to treat pain in late OA.


Assuntos
Artrite Experimental , Cartilagem Articular , Osteoartrite , Animais , Artrite Experimental/induzido quimicamente , Cartilagem Articular/patologia , Modelos Animais de Doenças , Articulação do Joelho/patologia , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/complicações , Dor/etiologia , Dor/patologia , Ratos
5.
Front Physiol ; 12: 644929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335288

RESUMO

Piezo2 is a mechanically gated ion-channel that has a well-defined role in innocuous mechanical sensitivity, but recently has also been suggested to play a role in mechanically induced pain. Here we have explored a role for Piezo2 in mechanically evoked bone nociception in Sprague Dawley rats. We have used an in vivo electrophysiological bone-nerve preparation to record the activity of single Aδ bone afferent neurons in response to noxious mechanical stimulation, after Piezo2 knockdown in the dorsal root ganglia with intrathecal injections of Piezo2 antisense oligodeoxynucleotides, or in control animals that received mismatch oligodeoxynucleotides. There were no differences in the number of Aδ bone afferent neurons responding to the mechanical stimulus, or their threshold for mechanical activation, in Piezo2 knockdown animals compared to mismatch control animals. However, bone afferent neurons in Piezo2 knockdown animals had reduced discharge frequencies and took longer to recover from stimulus-evoked fatigue than those in mismatch control animals. Piezo2 knockdown also prevented nerve growth factor (NGF)-induced sensitization of bone afferent neurons, and retrograde labeled bone afferent neurons that expressed Piezo2 co-expressed TrkA, the high affinity receptor for NGF. Our findings demonstrate that Piezo2 contributes to the response of bone afferent neurons to noxious mechanical stimulation, and plays a role in processes that sensitize them to mechanical stimulation.

6.
Mol Pain ; 16: 1744806920975950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33280501

RESUMO

The Acid Sensing Ion Channel 3 (ASIC3) is a non-selective cation channel that is activated by acidification, and is known to have a role in regulating inflammatory pain. It has pro-algesic roles in a range of conditions that present with bone pain, but the mechanism for this has not yet been demonstrated. We aimed to determine if ASIC3 is expressed in Aδ and/or C fiber bone afferent neurons, and to explore its role in the activation and sensitization of bone afferent neurons after acute inflammation. A combination of retrograde tracing and immunohistochemistry was used to determine expression of ASIC3 in the soma of bone afferent neurons. A novel, in vivo, electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons in the presence of carrageenan-induced inflammation, with and without the selective ASIC3 inhibitor APET×2. A substantial proportion of bone afferent neurons express ASIC3, including unmyelinated (neurofilament poor) and small diameter myelinated (neurofilament rich) neurons that are likely to be C and Aδ nerve fibers respectively. Electrophysiological recordings revealed that application of APET×2 to the marrow cavity inhibited carrageenan-induced spontaneous activity of C and Aδ fiber bone afferent neurons. APET×2 also inhibited carrageenan-induced sensitization of Aδ and C fiber bone afferent neurons to mechanical stimulation, but had no effect on the sensitivity of bone afferent neurons in the absence of inflammation. This evidence supports a role for ASIC3 in the pathogenesis of pain associated with inflammation of the bone.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Osso e Ossos/inervação , Inflamação/patologia , Fibras Nervosas Amielínicas/patologia , Células Receptoras Sensoriais/patologia , Animais , Osso e Ossos/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Carragenina , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Inflamação/metabolismo , Masculino , Bainha de Mielina/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Neurônios Aferentes/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Estresse Mecânico
7.
J Comp Neurol ; 528(11): 1903-1916, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31970770

RESUMO

While sensory and sympathetic neurons are known to innervate bone, previous studies have found it difficult to unequivocally identify and characterize only those that are of sensory origin. In this study, we have utilized an in vivo anterograde tracing technique to selectively label spinal afferent (sensory) nerve endings that innervate the periosteum and marrow cavity of murine long bones. Unilateral injections of dextran-biotin (anterograde tracer; 20% in saline, 50-100 nl) were made into L3-L5 dorsal root ganglia. After a 10-day recovery period to allow sufficient time for selective anterograde transport of the tracer to nerve terminal endings in bone, the periosteum (whole-mount) and underlying bone were collected, processed to reveal anterograde labeling, and immuno-labeled with antibodies directed against protein gene product (pan-neuronal marker; PGP9.5), tyrosine hydroxylase (sympathetic neuron marker; TH), calcitonin gene-related protein (peptidergic nociceptor marker; CGRP), and/or neurofilament 200 (myelinated axon marker; NF200). Anterograde-labeled nerve endings were dispersed throughout the periosteum and marrow cavity and could be identified in close apposition to blood vessels and at sites distant from them. The periosteum and the marrow cavity were each innervated by myelinated (NF200+) sensory neurons, and unmyelinated (NF200-) sensory neurons that were either peptidergic (CGRP+) or nonpeptidergic (CGRP-). Spinal afferent nerve endings did not express TH, and lacked the cylindrical morphology around blood vessels characteristic of sympathetic innervation. This approach to selective labeling of sensory nerve terminal endings will help to better identify how different sub-populations of sensory neurons, and their peripheral nerve terminal endings, interact with bone.


Assuntos
Medula Óssea/inervação , Periósteo/inervação , Células Receptoras Sensoriais/citologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Cell Tissue Res ; 378(3): 441-456, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31302761

RESUMO

Artemin is a neurotrophic factor that plays a crucial role in the regulation of neural development and regeneration and has also been implicated in the pathogenesis of inflammatory pain. The receptor for artemin, GFRα3, is expressed by sympathetic and nociceptive sensory neurons, including some that innervate the bone marrow, but it is unclear if it is also expressed in other cell types in the bone marrow. Our goal in the present study was to characterise the expression of GFRα3 in nonneuronal cells in the bone marrow. Immunohistochemical studies revealed that GFRα3-expressing cells in the bone marrow are spatially associated with blood vessels and are in intimate contact with nerve fibres. We used various combinations of markers to distinguish different cell types and found that the GFRα3-expressing cells expressed markers of nonmyelinating Schwann cells (e.g. GFAP, p75NTR, nestin). Analysis of bone marrow sections of Wnt1-reporter mice also demonstrated that they originate from the neural crest. Further characterisation using flow cytometry revealed that GFRα3 is expressed in a population of CD51+Sca1-PDGFRα- cells, reinforcing the notion that they are neural crest-derived, nonmyelinating Schwann cells. In conclusion, there is a close association between peripheral nerve terminals and a population of nonneuronal cells that express GFRα3 in the bone marrow. The nonneuronal cells have characteristics consistent with a neural crest-derived, nonmyelinating Schwann cell phenotype. Our findings provide a better understanding of the expression pattern of GFRα3 in the bone marrow microenvironment.


Assuntos
Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células de Schwann/metabolismo , Animais , Células da Medula Óssea/citologia , Camundongos , Camundongos Endogâmicos C57BL , Células de Schwann/citologia
9.
Bone ; 123: 168-175, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936039

RESUMO

The Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a non-selective cation channel that is activated by capsaicin, low pH and noxious heat. It has been suggested to have a pro-algesic role in a range of conditions that present with bone pain, but the mechanisms by which this occurs are not yet clear. In this study we aimed to determine if TRPV1 is expressed in Aδ and/or C fiber bone afferent neurons, and to explore its role in the activation and/or sensitization of bone afferent neurons to mechanical stimulation. A combination of retrograde tracing and immunohistochemistry was used to determine expression of TRPV1 in the soma of bone afferent neurons that innervate the rat tibial marrow cavity. A novel, in vivo, electrophysiological bone-nerve preparation, recently developed in our laboratory, was used to make recordings of the activity and sensitivity of bone afferent neurons in response to application of the TRPV1 agonist capsaicin to the marrow cavity. We found that a substantial proportion of bone afferent neurons express TRPV1. These include both small-diameter myelinated (neurofilament rich) and unmyelinated (neurofilament poor) neurons that are likely to be Aδ and C fiber neurons, respectively. Electrophysiological recordings revealed that application of capsaicin to the marrow cavity increased ongoing activity of C fiber, and to a lesser extent Aδ fiber, bone afferent neurons. Capsaicin also sensitized both Aδ and C fiber bone afferent neurons to mechanical stimulation. This evidence supports a role for TRPV1 in the pathogenesis of pain associated with bone pathology or disease.


Assuntos
Capsaicina/farmacologia , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Eletrofisiologia , Imuno-Histoquímica , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Estresse Mecânico , Canais de Cátion TRPV/genética
10.
Eur J Pain ; 23(2): 397-409, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30218545

RESUMO

BACKGROUND: Pathologies that affect the bone marrow have a significant inflammatory component; however, it is not clear how inflammatory mediators affect nociceptive nerve terminals within the marrow cavity. METHODS: In this study, an in vivo bone-nerve preparation was used to directly record the physiological response properties of bone marrow nociceptors innervating the tibial marrow cavity of rats, before and after application of the inflammatory agent carrageenan. In addition, endogenous artemin was sequestered by application of an artemin neutralizing antibody to determine if this could prevent the inflammation-induced physiological changes observed. RESULTS: A single injection of carrageenan administered into the tibial marrow cavity produced rapid changes in weight bearing (pain-like behaviour) in conscious animals. Carrageenan, but not saline, activated bone marrow nociceptors in whole-nerve recordings and sensitized a subtype of Aδ-bone marrow nociceptors to mechanical stimulation. The activation and sensitization had a rapid time course that matched that of pain-like behaviours. Sequestration of endogenous artemin significantly reduced carrageenan-induced increases in ongoing activity and completely abolished sensitization of bone marrow nociceptors to mechanical stimulation. CONCLUSIONS: These observations indicate that inflammation affects the activity and sensitivity of bone marrow nociceptors; that artemin plays a role in these changes; and that artemin might be a promising target for pharmacological manipulations in the treatment of inflammatory bone pain. SIGNIFICANCE: Most pathologies that affect the bone marrow have an inflammatory component. We have used a model of carrageenan-induced inflammation to show that sequestration of artemin reduces inflammation-induced activation and sensitization of bone marrow nociceptors. Our findings suggest that artemin signalling is a target for the treatment of inflammatory bone pain.


Assuntos
Dor Musculoesquelética/prevenção & controle , Proteínas do Tecido Nervoso/antagonistas & inibidores , Animais , Medula Óssea , Carragenina , Modelos Animais de Doenças , Inflamação , Masculino , Dor Musculoesquelética/patologia , Dor Musculoesquelética/fisiopatologia , Nociceptores , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...